Му 2391 81 статус

МУК 4.3.1677-03

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
4.3. МЕТОДЫ КОНТРОЛЯ. ФИЗИЧЕСКИЕ ФАКТОРЫ
Определение уровней электромагнитного поля, создаваемого излучающими
техническими средствами телевидения, ЧМ радиовещания и базовых станций
сухопутной подвижной радиосвязи

Дата введения: с момента утверждения

2. Представлены Минсвязи России (письмо N ДРТС-2/988 от 2.12.02). Одобрены комиссией по государственному санитарно-эпидемиологическому нормированию при Минздраве России.

3. УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Главным государственным санитарным врачом Российской Федерации от 29.06.03.

4. ВВЕДЕНЫ взамен МУК 4.3.045-96 и МУК 4.3.046-96 (в части базовых станций).

Назначение и область применения

Методические указания предназначены для применения специалистами центров государственного санитарно-эпидемиологического надзора, инженерно-техническими работниками, проектными организациями, операторами связи в целях обеспечения санитарно-эпидемиологического надзора за источниками излучения.
Методические указания устанавливают методики определения (расчета и измерений) уровней электромагнитного поля (ЭМП), излучаемого техническими средствами телевидения, ЧМ радиовещания и базовых станций сухопутной подвижной радиосвязи в диапазоне 27-2400 МГц в местах их размещения.
Документ введен взамен МУК 4.3.04-96* и МУК 4.3.046-96 (в части базовых станций). Отличается от прежних документов тем, что содержит методику расчета уровней ЭМП для произвольных расстояний от антенн, включая ближнюю зону, с учетом подстилающей поверхности и влияния различных металлоконструкций.
_____________
* Вероятно ошибка оригинала. Следует читать МУК 4.3.045-96. — Примечание «КОДЕКС».
Методические указания не распространяются на средства связи, содержащие апертурные антенны.

Общие положения

1. Общие положения

Определение уровней ЭМП проводится с целью прогнозирования и определения состояния электромагнитной обстановки в местах размещения излучающих объектов телевидения, ЧМ вещания и базовых станций сухопутной подвижной радиосвязи.
Расчетное прогнозирование проводится:
— при проектировании передающего радиотехнического объекта (ПРТО);
— при изменении условий размещения, характеристик или режимов работы технических средств действующего ПРТО (изменение расположения антенн, высот их установки, направлений излучения, мощности излучения, схемы антенно-фидерного тракта, застройки прилегающих территорий и т.п.);
— в случае отсутствия материалов расчетного прогнозирования электромагнитной обстановки ПРТО;
— при сдаче ПРТО в эксплуатацию (при внесении изменений в проект относительно его первоначального варианта, для которого осуществлялось расчетное прогнозирование).
Измерения проводятся:
— при сдаче ПРТО в эксплуатацию;
— в порядке плановых контрольных измерений не реже одного раза в три года (в зависимости от результатов динамического наблюдения периодичность проведения измерений уровней ЭМП может быть сокращена по решению соответствующего центра госсанэпиднадзора, но не чаще, чем один раз в год);
— при изменении условий размещения, характеристик или режимов работы технических средств действующего ПРТО;
— после проведения защитных мероприятий, направленных на снижение уровней ЭМП.
В методике расчетного прогнозирования определены следующие способы расчета уровней ЭМП:
— непосредственно по току в проводниках антенны (предварительно рассчитанному);
— по диаграмме направленности (ДН) антенны, которая определяется по распределению тока в проводниках антенны;
— по паспортным ДН антенны.
Для тех случаев, когда антенна представляет собой антенную решетку, в качестве элементов которой используются излучатели неизвестной конструкции с известными ДН, предусмотрена возможность расчета ДН такой решетки.
Расчет уровней ЭМП непосредственно по току выполняется для относительно малых расстояний от антенны (в ближней и промежуточной зонах), расчет по ДН — для относительно больших расстояний (в дальней зоне). Паспортные ДН используются при отсутствии сведений о конструкции антенны.

Распределение тока по проводникам антенны находится решением электродинамической задачи методом интегрального уравнения. При этом антенна представляется в виде системы определенным образом расположенных и ориентированных в пространстве проводников.
В методике расчета уровней ЭМП предусмотрены:
— возможность учета подстилающей поверхности на основе двухлучевой модели распространения радиоволн в предположении, что подстилающая поверхность не влияет на распределение тока в проводниках антенны;
— возможность учета влияния металлоконструкций на основе определения тока, наведенного на них полем антенны.
Исходными данными для расчета уровней ЭМП служат геометрические параметры антенны в виде набора координат концов проводников, геометрические и электрофизические параметры подстилающей поверхности, технические характеристики радиопередающих средств.
В прилож.3 приведена информация о рекомендуемом программном обеспечении, включающем в себя расчет уровней ЭМП по изложенным в методических указаниях методикам для указанных технических средств.
Методика измерений основана на принципах, заложенных в расчетный прогноз, и ориентирована на использование существующих измерительных приборов, обеспечивающих достаточную точность контроля уровней ЭМП.

Основные положения методики расчетного прогнозирования уровней электромагнитного поля

2.1. Сущность метода

Расчет уровней ЭМП непосредственно по току антенны выполняется в два этапа: сначала рассчитывается распределение тока в проводниках антенны, затем — уровни ЭМП. Расчет распределения тока выполняется на основе решения соответствующей электродинамической задачи методом интегрального уравнения в тонкопроволочном приближении. При этом реальная конструкция антенны представляется в виде системы электрически тонких цилиндрических проводников. Решение интегрального уравнения выполняется методом коллокации при кусочно-синусоидальном базисе. Расчет уровней ЭМП выполняется непосредственно по найденному распределению тока с учетом наличия апертурных искажений и реактивных полей.
Расчет уровней ЭМП по рассчитанной ДН выполняется в три этапа: сначала рассчитывается распределение тока в проводниках антенны, затем — ДН и коэффициент направленного действия (КНД), на завершающем этапе по найденным ДН и КНД рассчитываются уровни ЭМП. Распределение тока в проводниках определяется так же, как и при расчете уровней ЭМП непосредственно по току антенны.
Расчет уровней ЭМП по паспортным ДН выполняется в один этап. При этом считается, что излучение (с заданной направленностью, определяемой паспортными ДН) происходит из точки, принимаемой за фазовый центр антенны.
При дальнейшем изложении, если нет специальных оговорок, единицы измерения всех величин даны в системе СИ.

2.2. Расчет распределения тока в проводниках антенны

Расчет распределения тока в проводниках антенны выполняется в следующей последовательности:
— построение электродинамической модели антенны;
— расчет элементов матрицы системы линейных алгебраических уравнений (СЛАУ) — алгебраического аналога исходного интегрального уравнения;
— решение СЛАУ и определение коэффициентов разложения искомой функции распределения тока (токовая функция) по заданному базису.

Построение электродинамической модели

Реальная конструкция представляется в виде системы электрически тонких прямолинейных цилиндрических проводников. Радиус проводников при этом не должен превышать (здесь и далее — длина волны). Проводники большего радиуса представляются в виде проволочных цилиндров. Сплошные металлические поверхности представляются в виде проволочных сеток. Проводники, оси которых являются гладкими кривыми, представляются в виде ломаных.
Вводится пространственный контур , образованный совокупностью осей проводников. Определяется положительное направление обхода контура (оно же положительное направление для тока), и вводится криволинейная координата , отсчитываемая вдоль него.
Для определения кусочно-синусоидальных базисных функций каждый прямолинейный проводник разбивается на электрически короткие частично пересекающиеся отрезки — сегменты. Каждый -сегмент определяется тремя точками: начальной , средней , и конечной (в соответствии с выбранным положительным направлением). При этом начальная точка -го сегмента (если он не первый на данном проводнике) совпадает со средней точкой -го, конечная (если он не последний на данном проводнике) — со средней точкой -го: , . Если -й сегмент является первым (последним) на данном проводнике, то его начальная (конечная) точка совпадает с началом (концом) проводника.
Точкам, определяющим некоторый -й сегмент, сопоставляются 3 радиус-вектора , , (начальная, средняя и конечная точка, соответственно), а также радиус-вектор точки коллокации — точки на поверхности проводника, ближайшей к точке .
Прямолинейные проводники разбиваются на сегменты равномерно. При этом длину сегмента следует выбирать из условия:

, где (2.1)

— радиус проводника.
При увеличении длины сегмента относительно указанных пределов возрастает погрешность аппроксимации, при уменьшении — ухудшается обусловленность СЛАУ, в результате чего вычислительный алгоритм может оказаться неустойчивым.
Для описания разветвлений проводников вводятся дополнительные сегменты. При этом средняя точка дополнительного сегмента совпадает с крайними точками соединяющихся проводников, а начальная и конечная — со средними точками крайних (ближайших) сегментов на данных проводниках. При этом во избежание появления линейно зависимых уравнений СЛАУ необходимо соблюдение следующих правил:
— число компланарных проводников, соединяющихся в одной точке, должно быть не более 3 (вводятся 2 дополнительных сегмента);
— число некомпланарных проводников, соединяющихся в одной точке, должно быть не более 4 (вводятся 3 дополнительных сегмента).
При необходимости описания электрического соединения большего числа проводников, следует точки электрических контактов разнести в пространстве на электрически малое расстояние, что несущественно для электрических характеристик антенны.
При моделировании сплошной поверхности проволочной сеткой дополнительные сегменты в узлах сетки не вводятся.
Зазоры активных вибраторов (к которым подводятся питающие напряжения) также описываются сегментами. При этом средняя точка сегмента совпадает со средней точкой зазора, а начальная и конечная — со средними точками крайних (ближайших) сегментов на примыкающих к зазору проводниках (плечах вибратора).

Расчет матрицы СЛАУ

Матрица СЛАУ (расширенная) содержит квадратную матрицу ( — общее число сегментов в модели) с элементами () и — мерный столбец свободных членов (). Здесь — номер строки матрицы (номер уравнения СЛАУ, номер точки коллокации), — номер столбца матрицы (номер сегмента).
Элемент квадратной матрицы численно равен взятой с обратным знаком тангенциальной составляющей электрического поля, создаваемого -м сегментом с единичным током в средней точке -го сегмента. Величина определяется как сумма двух составляющих:

, где (2.2)

, где (2.3)

, ;

— -орт в цилиндрической системе, связанной с -м сегментом;
— -орт в цилиндрической системе, связанной с отрезком (знак «-«) или отрезком (знак «+») -го сегмента;
— -орт в цилиндрической системе, связанной с отрезком (знак «-«) или отрезком (знак «+») -го сегмента;
— аппликата -й точки коллокации в цилиндрической системе, связанной с отрезком (знак «-«) или отрезком (знак «+») -го сегмента;
, — значения функции Грина для различных пар точек;
— расстояния между -й точкой коллокации и крайними (начальной и конечной) точками -го сегмента;
— расстояние между -й точкой коллокации и средней точкой -го сегмента;
— волновое число.
Свободные члены СЛАУ определяются следующим образом.
Если -я точка коллокации соответствует сегменту, расположенному на проводнике, то . Если -я точка коллокации соответствует сегменту, расположенному в зазоре активного вибратора, то в качестве берется нормированная величина входного напряжения. При этом, если антенна содержит один вибратор, то нормированное входное напряжение полагается равным единице. Если же антенна содержит два или более вибраторов (антенная решетка), для одного из вибраторов нормированное входное напряжение полагается равным единице, а остальные входные напряжения нормируются к фактической величине входного напряжения данного вибратора.
Решение СЛАУ рекомендуется выполнять методом оптимального исключения.
СЛАУ записывается следующим образом:

, (2.4)

В результате решения СЛАУ определяются коэффициенты разложения искомой токовой функции , , … . Численно данные коэффициенты равны токам в средних точках соответствующих сегментов при выбранной нормировке входных напряжений (токов).

2.3. Расчет уровней электромагнитного поля

2.3.1. Общие положения

Для выбора способа расчета уровней ЭМП вводятся дополнительные критерии.
При уровень ЭМП необходимо рассчитывать непосредственно по току антенны, а при — по ДН, рассчитанной по току антенны или паспортным ДН, где:

, где (2.5)

— расстояние от геометрического центра антенны до точки наблюдения (в которой определяется уровень ЭМП);
— максимальный размер антенны.
Если сведения об устройстве (конструкции) антенны отсутствуют (т.е. не представляется возможным построить электродинамическую модель и рассчитать ток антенны), но известны ее паспортные ДН, расчет уровней ЭМП выполняется по паспортным ДН. При этом, если полученные значения напряженности поля (электрического и магнитного) необходимо умножить на поправочный коэффициент , график которого в зависимости от параметра приведен на рис.1.

Рис.1

Критерием необходимости учета влияния металлоконструкций служит выполнение неравенства:

, где (2.6)

— расстояние от точки наблюдения до ближайшей к ней точки на металлоконструкции.
— максимальный размер металлоконструкции, измеренный по вертикали при вертикальной поляризации и по горизонтали при горизонтальной поляризации;
— максимальный размер металлоконструкции, измеренный по горизонтали при вертикальной поляризации и по вертикали при горизонтальной поляризации;
, — коэффициенты, значения которых определяются по графикам на рис.2.

Рис.2

Влияние подстилающей поверхности не учитывается в следующих случаях:
— точка наблюдения расположена ниже уровня подстилающей поверхности (здесь имеются в виду поверхности ограниченных размеров, например, крыши зданий);
— высота центра антенны и высота точки наблюдения относительно подстилающей поверхности в 10 и более раз превышает расстояние между центром антенны и точкой наблюдения.
Излучаемая мощность определяется следующим образом.
Для антенно-фидерных устройств ЧМ вещания и базовых станций сухопутной подвижной радиосвязи величина определяется по формуле:

, где (2.7)

— номинальная мощность передатчика;
— КПД фидера;
— погонное ослабление в фидере, дБ/м;
— длина фидера;
— коэффициент стоячей волны напряжения на входе антенны.
Для антенно-фидерных устройств телевидения диапазона УВЧ излучаемая мощность определяется также по формуле (2.7), но при этом определяется по формуле: , где и — номинальные мощности передатчиков изображения и звукового сопровождения, соответственно.
Для антенно-фидерных устройств телевидения диапазона ОВЧ расчет уровней ЭМП выполняется на двух частотах — на частоте несущей изображения и на частоте несущей звукового сопровождения (телевизионная станция рассматривается как два независимых передатчика). В обоих случаях излучаемая мощность определяется по формуле (2.7), при этом для частоты несущей изображения определяется по формуле , а для частоты несущей звукового сопровождения величина берется равной .

2.3.2. Расчет уровней электромагнитного поля непосредственно по току антенны

При отсутствии влияющих металлоконструкций и подстилающей поверхности расчет уровней ЭМП выполняется следующим образом.
Вектор напряженности электрического поля в точке наблюдения с радиус-вектором определяется по формуле:

, где (2.8)

— поле, создаваемое антенной в свободном пространстве;
, , — орты основной декартовой системы координат;
, , — коэффициенты, которые определяются так же, как и элементы матрицы СЛАУ , с той лишь разницей, что вместо точки коллокации берется точка наблюдения , а вместо орта берутся орты , , при вычислении , , , соответственно.
Декартовы составляющие вектора напряженности электрического поля определяются по формулам: